

Halogen-free, radiation cross-linkable, flame retardant compound

■ Compound class ■ Compound category ■ Flame retardant

■ Standards

EN 50264-1 EI 105 and EI 110

■ Operating temperature [C°] ■ Oil resistance level
-40 to 125 ★

■ Typical applications

Insulation

Radiation cross-linkable halogen-free, low smoke compound, offering excellent mechanical and electrical properties. The compound is made to meet EN 50264-1 EI 105 and EI 110 requirements.

Rolling Stock, Rapid Transit, Railways

■ Features

Flame retardant

Halogen-free

ATH

Low smoke

High temperature resistant

Flexible

Flexible at low temperatures

PHYSICAL PROPERTIES

■ Physical properties	Unit	Typical value	Test method
Density*	g/cm ³	1.50	DIN EN ISO 1183-1A
Hardness*	Shore D	49	DIN ISO 48-4
Melt Flow Index (170°C; 21,6kg)	g/10 min	22	DIN EN ISO 1133

MECHANICAL PROPERTIES**

■ Thermoplastic / before crosslinking	Unit	Typical value	Test method
Tensile strength	N/mm²	>10	IEC 60811-501
Elongation at break	%	>200	IEC 60811-501
■ After crosslinking ***	Unit	Typical value	Test method
Tensile strength (175kGy)	N/mm²	14	IEC 60811-501
Elongation at break (175kGy)	%	220	IEC 60811-501
■ After ageing in air oven 240h at 120°C**/*	Unit	Typical value	Test method
Variation in tensile strength	%	<25	IEC 60811-401
Variation in elongation at break	%	<25	IEC 60811-401

THERMAL PROPERTIES***

■ Low temperature tests	Unit	Typical value Test method
Low temp. flexibility winding on mandrel @ - 40°C	-	No cracks IEC 60811-506
Cold impact at -15°C	-	Pass IEC 60811-506
Elongation at break at -40°C	%	> 35 IEC 60811-505
■ Heat tests	Unit	Typical value Test method
Penetration 4h at 140°C	%	<50 IEC 60811-508
Shrinkage test 1h at 120°C	%	<2 IEC 60811-502
■ Hot set test at 200°C / 15min / 0,2MPa	Unit	Typical value Test method
Elongation under load	%	<50 IEC 60811-507
Residual elongation	%	< 10 IEC 60811-507

ELECTRICAL PROPERTIES*

■ Major electrical properties	Unit	Typical value	Test method
Electrical breakdown	-	No breakdown	EN 50264
Volume resistivity (at 23°C)	Ω cm	10 ¹⁴	IEC 60093
Volume resistivity (at 90°C)	Ω cm	> 10 ¹¹	IEC 60093

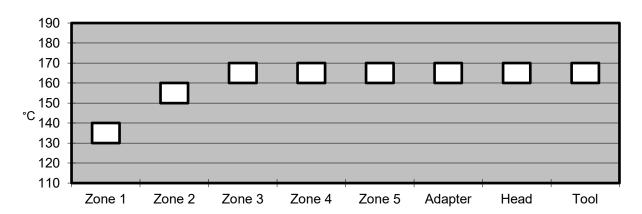
RESISTANCE***

■ Ozone resistance	Unit	Typical value	Test method
Method A 250ppm – 24h at 25°C		No cracks	EN 50305
Method B 200ppm – 72h at 40°C		No cracks	EN 50305

BURNING PROPERTIES*

■ Main burning properties	Unit	Typical value	Test method
LOI	%	32	ASTM D 2863 A
Halogen content	%	0	IEC 754-1
Temperature index	°C	250	ASTM D 2863 D
Toxicity index	-	2	EN 50305
■ Acid gas emission	Unit	Typical value	Test method
Corrosivity: pH (min.)	-	>4.5	IEC 60754-2
Conductivity (max.)	μS/mm	<4	EN 50267-2-2

^{*} pressed plaques


^{**} extruded tapes

^{***} cross-linked plaques or tapes

PROCESSING GUIDE

■ Screw configuration	Good results have been achieved with 'halogen-free' screws, and barrier type screws (BM) having high flights and a L/D-ratio > 24:1. Screws having low shear are recommended
■ Screw cooling	For increase of line speeds, cooling the screw to around 80°C could be effective, although this could lead to pulsation.
■ Screen pack	40-60-40 mesh
■ Extrusion dies	For pressure extrusion, normal dies are recommended. Use of semi-pressure tooling may improve low temperature flexibility properties
■ Die opening	Die opening should be $1-5\%$ below the required OD of the wire.
■ Temperature profile extruder	The profile shown below may vary slightly depending on extruder type, head design & output.

■ Maximum mass temperature	170°C
■ Wire/conductor	Tin-plated. Concentric conductors are required for optimum abrasion resistance and low temperature flexibility.
■ Drying	Pre-drying of Mecoline Compounds is normally not necessary provided that the compound has been stored in the original sealed bags under cool (max. 30°C) and dry conditions. Mecoline compounds used from open bags require pre-drying during 4–6 hours at 60–70°C.
■ Recommended colour master batches	Well dispersed EVA master batch 0,5-1,0%. For black jacket applications, UV resistance can be obtained by adding a higher level of master batch depending on requirements and type of carbon black master batch used.

CROSSLINKING INFORMATION

■ Recommended radiation dose 150-200 kGy

■ **Radiation information** If the RDX 2264-1 is used as single layer only, we recommend to irradiate with approx. 175 kGy to achieve a hot-set-elongation (under load at 200°C

and 20 N/cm²) of maximum 50%.

Should the RDX 2264-1 be used as primary insulation in a (co-extruded) dual wall construction with RDX 2264-3 as secondary insulation (=sheath) it is suggested to crosslink this dual wall construction in one step only with approx. 150 kGy. In this way the RDX 2264-1 will be slightly under cross-

linked and the RDX 2264-3 will be slightly over-crosslinked.

■ Dual wall constructions In dual-wall constructions, where RDX 2264-1 is used as the primary

insulation and the RDX 2264-3 as secondary insulation (to achieve Oil and fuel resistance), the adherence of the 2 insulation-layers is moderate, due to the difference in polarity of the 2 compounds.

STORAGE INFORMATION

■ Form & packaging Pellets in sizes 2.8mm, PE-bags (25 kg), Octabins (1.000kg)

Moisture-resistant bags (25kg) & octabins (alu-innerliner, max. 1250kg)

■ Shelf life 1 year after production

Note: The information given in this datasheet is believed to be accurate and reliable. However, no warranty, express or implied, or guarantee is given as to the suitability, accuracy, reliability or completeness of the information. This information does not hold us liable for damages or penalties resulting from following our suggestions or recommendations.

I RDX 1230 F TDS ENG rev03 *02.03.2018* AK